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Energy spectra of strongly stratified and rotating turbulence
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Turbulence under strong stratification and rotation is usually characterized as quasi-two-dimensional turbu-
lence. We develop a ‘‘quasi-two-dimensional’’ energy spectrum which changes smoothly between the Kol-
mogorov2

5
3 law ~no stratification!, the 22 scalings of Zhou@Phys. Fluids7, 2092 ~1995!# for the case of

strong rotation, as well as the22 scalings for the case of strong rotation and stratification. For strongly
stratified turbulence, the model may give the22 scaling predicted by Herring@Meteorol. Atmos. Phys.38, 106
1988#, and the2

5
3 scaling indicated by some mesoscale observations.@S1063-651X~98!00705-3#

PACS number~s!: 47.27.2i
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The important applications of turbulence under stro
stratification and rotation in geophysics and engineering
well documented~Refs. @1–5#!. As an example, large-scal
flows in oceans and the earth’s atmosphere are known t
almost two dimensional, but not exactly so. Typically, o
characterizes these types of flows as quasi-two-dimensi
turbulence. In this note, we discuss the development of
spectra for turbulence subject to strong~stable! stratification
and rotation.

We define the asymptotic regimes of geophysical dyna
ics in terms of the following nondimensional parameters.
H be the vertical~spectral! length scale,L the horizontal
length scale, andUh a characteristic horizontal velocit
scale. Then the spectral aspect ratio can be defined
a5H/L. We define the Froude number based on horizon
and vertical scales:

Fh5Uh /LN0[1/N, Fv5Uh /HN05Fh /a. ~1!

The classical Rossby and anisotropic Rossby numbers
defined as follows:

Ro5Uh /L f 0[1/f , Roa5Ro3a. ~2!

Here N0 is the Brunt-Väisälä frequency for the constan
stratification gradient andf 052V0 is the Coriolis paramete
~V0 is the frequency of background rotation!; the vertical
axis is chosen to be aligned with the axis of rotation and
mean stratification gradient. The governing flow equatio
are three-dimensional~3D! Euler-Boussinesq equations fo
rotating stratified fluids with zero-flux boundary conditio
in the vertical direction. Such boundary conditions imp
zero tangential stress on the vertical boundaries.

The Burger number characterizes the relative importa
of the effects of rotation and stratification@10#:

Bu5Roa
2/Fh

2[Ro2/Fv
2[N0

2a2/ f 0
2, ~3!

with Bu!1 corresponding to rotation-dominated flows a
Bu@1 corresponding to stratification-dominated flow
Also, a measure of the relative importance of~stable! strati-
571063-651X/98/57~5!/6187~4!/$15.00
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fication versus rotation is the internal radius of deformat
L. The internal~Rossby! radius of deformationL is defined
as

L5N0H/ f 0 , ~4!

so thatBu5(L/L)2. WhenL@L, the flow is organized in
quasi-2D vertical columns and whenL!L, the flow is or-
ganized in thin horizontal layers with a strong vertical va
ability.

From the mathematical analysis~Babin and co-workers,
@6–9#!, we constructed Fig. 1 to illustrate the global pictu
of geophysical dynamics at small Froude and/or sm
Rossby regimes. Since we are not takinga→0, eitherFh or
Fv can be used in describing asymptotic regimes. ThenFr
denotes either of these numbers.

When only strong rotation exists~Fig. 1, vertical axis!,
any solution of the initial value problem for the 3D Eule
Boussinesq–Navier-Stokes system can be split into
parts. The first component is a solution of the tw
dimensional ~2D! barotropic Euler-Boussinesq–Navie
Stokes system with vertically averaged initial data. The d

FIG. 1. Geophysical dynamics: the global picture for sm
Froude or small Rossby regimes.
6187 © 1998 The American Physical Society
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namics of the second part that describes vertical variabilit
called ageostrophic in this limiting context. In th
asymptotic regime, it is exactly solved in terms of 2D d
namics of vertically averaged fields. The error of the splitti
is of the order of the anisotropic Rossby number@defined by
Eq. ~2!#, a very small number in many situations~Babin and
co-workers @6,8,9#!. Energy cascades for the ageostrop
modes are completely frozen in the vertical direction and
ageostrophic dynamics is purephase turbulence. In pure
phase turbulence, the amplitudes of the ageostrophic m
remain constant in absolute values; turbulent dynamics
restricted to the phases of the ageostrophic modes. The a
strophic field is phase locked to phases associated with
tically averaged vertical vorticity and vertical velocity
which are advected by 2D turbulence of vertically averag
fields. There is no slaving of the amplitudes of ageostrop
modes by the 2D turbulence, only phase locking.

When stratification is present, the cascades of ag
strophic modes~AG! become ‘‘unfrozen.’’ As stratification
increases, the direct cascade of ageostrophic energy
large scales to small scales increases~Babin et al., @8#!.
When both rotation and stratification effects are of the sa
order of magnitude, the situation called Burger one regi
@10#, Babinet al. @7–8# established the splitting between 3
quasigeostrophic~QG! and reduced ageostrophic fields usi
the Craya-Herring cyclic bases@11#. In these bases the age
strophic modes are characterized in terms of the diverg
velocity potential ~horizontal divergence! and the geo-
strophic departure and/or thermal wind unbalance~e.g.,@8#!.
The QG modes inversely transfer the vortical~rotational! en-
ergy upscales. On the other hand, direct energy cascad
the AG field provide a mechanism fornonlinear geostrophic
adjustment. This is fundamentally different from the
rotation-dominated regimes where AG cascades are fro
The nonlinear geostrophic adjustment mechanism is ind
the capacity of the AG dynamics to transfer energy
smaller scales and eventually dissipate its iner
gravitational energy@12#. Direct cascades of energy of th
ageostrophic modes indicate that the observed2 5

3 power law
is the spectrum of internal gravity waves with direct ener
cascade to large wave numbers~small scales!.

In order to infer the form of the inertial-range spectru
E(k) for different asymptotic regimes, it is necessary to
timate the magnitude for the triple velocity correlations.
general,t3 , the time scale for the decay of the triple corr
lations responsible for inducing turbulent spectral trans
may depend on any relevant turbulence parameters@13,14#.
When energy is conserved by the nonlinear interaction an
local cascade has been assumed, the energy flux, w
equals the dissipation ratee, is independent of wave numbe
k. Local cascade also implies thate is explicitly proportional
to t3 , and depends on the wave number and on the powe
the omni-directional energy spectrum. A simple dimensio
analysis leads to

e5A2t3~k!k4E2~k!, ~5!

whereA is a constant. When the time scale for triple dec
relation is simply given by the nonlinear timet3(k)5tnl
5@k3/2E1/2(k)#21, the classical Kolmogorov spectrum is r
covered.
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At asymptotic limits of strong rotation, strong stratifica
tion, and the limit of strong rotation and stratification, the
are two disparate time scales. The difference in time sc
and anisotropies in length scales are crucial for the ma
ematical analysis of Babinet al. @6–9#, and is the basic re-
quirement for the methodology of our phenomenologi
analysis@5,13–15#. The major difficulty encountered in un
derstanding the dynamics of geophysical flows is the in
ence of the oscillations~inertio-gravity waves! generated by
the rotation and stratification. This effect leads to the mo
fication of the spectral time for energy transfer down sca

We recall that the dispersion relation for inertio-gravi
waves is given by the formulavk

25N0
2(kh

2/k2)1 f 0
2(k3

2/k2),
where k5(k1 ,k2 ,k3) is the wave vector, andkh

25k1
21k2

2

and k25k1
21k2

21k3
2 ~axes of rotation and gravity are alon

the vertical axise35@0,0,1#!. As above, we define the ver
tical and the horizontal spectral scales asH51/uk3u, L
51/kh . If a5H/L5kh /uk3u is the ratio of these length
scales, thenvk

25( f 0 /a)21(N0 /b)2, where b5Aa2211
anda5Aa211. Then, the spectral Burger number@Eq. ~3!#
is a ratio of the spectral stratification frequencyN0 /b and
the spectral rotation frequency f 0 /a: Bu
5(N0 /b)2/( f 0 /a)25(N0a)2/( f 0b)25N0

2H2/ f 0
2L2.

We first give a brief treatment for the strongly rotatin
turbulence case. In a regime of high Reynolds numbers
low Rossby numbers, turbulence is characterized by a s
time scalet f5a/ f 0 , where a5Aa211 and f 052V0 . A
direct application oft35t f results in the energy spectrum
for turbulence subject to strong rotation:

E~k!5Cf~e f 0 /a!1/2k22, ~6!

whereCf is a constant@14#. The introduction of the aspec
ratio into the time scale is an improvement over our previo
phenomenological analysis@14,15# since the model can now
distinguish the anisotropic nature of rotating flow.

For turbulence in the Burger one regime, the same pro
dure, namely settingt35t f N , leads to the energy spectrum
for turbulence subject to strong rotation and stratification

E~k!5Cf N@eA~N0 /b!21~ f 0 /a!2#1/2k22, ~7!

whereb5Aa2211.
Based on the analogy between the rotating and strati

turbulence@2#, previous results can be extended to the ca
of strongly stratified turbulence. Substitutingt35tN leads to

E~k!;~eN0 /b!1/2k22. ~8!

This reduces to a result found previously by Herring@16# and
Kimura and Herring@17# for the isotropic case.

We note, however, that based on experimental findings
Dickey and Mellor @18#, some further extensions may b
needed in the cases of strongly stratified turbulence,
probably also for the case of stratified and rotating turb
lence. We shall restrict our discussion below to stron
stratified turbulence for brevity. The results can be exten
trivially to include the rotation effect by usingt f N instead of
tN . For a strongly stratified flow, the energy-transfer proc
may be modified in two ways. First, the effect of the intern
waves is reflected in the reduced time scales for the tr
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correlations. This effect reduces the rate of the direct ene
transfer down scales and leads to the spectrum predicte
Herring @16#. Second, the effect of the internal waves m
lead to a direct reduction in the energy flux, and this red
tion is called the ‘‘energy radiation rate.’’ Indeed, fo
moving-grid-generated turbulence, Dickey and Mellor@18#
showed a clear break in the decay rate of the turbule
energy when the buoyancy effects become active. This b
indicates the collapse of three-dimensional turbulence
nearly all scales. The interpretation given by Dickey a
Mellor @18# is that the nonlinear energy transfer now has
general form

e5~u3/ l !2CN0
3l 2. ~9!

Hereu is the rms of turbulent velocity,l is the integral scale
obtained by integrating the longitudinal velocity autocorre
tion, and C is a constant estimated experimentally
1.91022 @18#.

Including the ‘‘energy radiation term’’ of Dickey and
Mellor only requires a very minor modification to our pro
cedure. Note that Eq.~5! can be rewritten as

e85A2t3~k!k4E2~k!, ~10!

where we have introduced the effective dissipation ratee8
5e1CN0

3l 2. We remark that when the first effect of stra
fication is weak (t3;tnl), the energy spectrum modified b
the second effect of stratification takes the form

E~k!;~e8!2/3k25/3. ~11!

In general, the lifetime of triple correlations in rotatin
and stratified turbulence might be more accurately treated
taking into account the possibility that these correlations
cay because of the influence of both wave propagation
nonlinear triadic interactions@14#. The simple choice

1

t3~k!
5

1

tnl~k!
1

1

tE~k!
~12!

satisfies the appropriate limiting cases:t3(k)→tnl without
external agencies, andt3(k)→tE with external agencies
HeretE may be taken ast f , tN , or t f N .

We now find that the general energy spectrum
strongly stratified turbulence takes the form

E~k!5Z82A24/3e82/3k25/3, ~13!

whereZ8 is given by
y
by

-

e
ak
at
d
e

-

y
-
d

r

Z85 1
2 ~AY81A2Y812AY8214Z08!, ~14!

where

Y85A3 1
2 1A 1

4 1S 4Z08

3
D 3

1A3 1
2 2A 1

4 1S 4Z08

3
D 3

.

~15!

The parameters areA5CK
23/4 andZ085@AkE8 /k#2/3. Again,

depending on the situation,kE8 may take values fromkN8
5(N0

3/e8)1/2 ~for strongly stratified flows!, and kf N8
5$@(N0 /b)21( f 0 /a)2#3/2/e8%1/2 ~for stratified and/or rotat-
ing flows!. These equations reduce to the classical Kolm
orov ‘‘2 5

3’’ spectrum whenZ08→0 ~so thatZ8→1!, and to
our strongly stratified or rotation and/or stratification mod
fied ‘‘22’’ spectrum whenZ08→` ~so thatZ8→Z08

1/4!. Al-
ternatively, the scaling of the energy spectrum in the stron
stratified case may remain as2 5

3 ~as pointed out already by
t3;tnl!. For intermediate strength of the stratification~or
rotation and/or stratification! the spectrum varies smoothl
between these two limiting forms, according to the increa
of the controlling parameterZ08 with increasing ratiokE8 /k.

We note the difference between the energy spectra
2D case@19# and a quasi-2D case. Based on statistical t
bulence theory, Herring@16# found that it is quite difficult to
justify 2D spectra of2 5

3 ~for scales larger than the energ
injection scale! and 23 spectra~for scales smaller than th
energy injection scale! for a stratified flow. The reason is tha
the triple-moment relaxation is dominated by waves. T
fact that the time scale for triple velocity correlation is dom
nated by faster time scale forms the foundation for our
velopment and the work of Herring@16#.

We conclude this paper by noting that our energy sp
trum, in its most general form, would lead to an energy sp
trum that changes smoothly between the Kolmogorov2 5

3

law ~no stratification!, the 22 scalings of Zhou@14# for the
case of strong rotation, as well as the22 scalings for the
case of both strong rotation and stratification. For stron
stratified turbulence, the model may give the22 scaling
predicted by Herring@16# and the2 5

3 scaling indicated by
some observations at mesoscales.
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